			DE		rs co. Desigi	NING WITH Z	INC				Contact Sales:	
										563-382-4264		
DECO	ZINC ALLOY PROPERTIES										sales@decoprod.com	
Alloy	Zam	ak #3	Zam	ak #5	Zam	ak #7	Zam	ak #2	Z/	4-8	EZ	AC
Mechanical Properties	Die Cast		Die Cast		Die Cast		Die Cast		Die Cast		Die Cast	
Ultimate Tensile Strength: psi X 10 ³ (MPa)	41 (283)		48 (328)		41 (283)		52 (359)		54 (374)		60 (416)	
Yield Strength - 0.2% Offset: psi X 10 ³ (MPa)	32 (221)		39 (269)		32 (221)		41 (283)		42 (290)		57 (396)	
Elongation: % in 2"	10		7		13		7		6-10		1	
Shear Strength: psi X 10 ³ (MPa)	31 (214)		38 (262)		31 (214)		46 (317)		40 (275)			-
Hardness: Brinell	82		91		80		100		95-100		120	
Impact Strength: ft-lb (J)	43 ² (58)		48 ² (65)		43 ² (58)		35 ² (48)		31 ³ (42)		-	
Fatigue Strength Rotary Bend- 5X10 ⁸ cycles psi X 10 ³ (MPa)	6.9 (48)		8.2 (57)		6.8 (47)		8.5 (59)		15 (103)		-	
Compressive Yield Strength - 0.1% Offset: psi X 10 ³ (MPa)	60 ⁴ (414)		874 (600)		604 (414)		934 (641)		37 (252)		-	
Modulus of Elasticity - psi X 10 ⁶ (MPa X 10 ³)	12.4 ⁶ (85.5)		12.4 ⁶ (85.5)		12.4 ⁶ (85.5)		12.4 ⁶ (85.5)		12.4 ⁶ (85.5)		16.2 (112)	
Poisson's Ratio	0.27		0.27		0.27		0.27		0.29		-	
Physical Properties												-
Density: lb/cu in (g/cm³)	.24 (6.6)		.24 (6.6)		.24 (6.6)		.24 (6.6)		.227 (6.3)		.234 (6.49)	
Melting Range: °F(°C)	718-728 (381-387)		717-727 (380-386)		718-728 (381-387)		715-734 (379-390)		707-759 (375-404)		715-752 (379-400)	
Electrical Conductivity: % IACS	27		26		27		25		27.7		-	
Thermal Conductivity: BTU/ft/hr/°F (W/m/hr/ °C)	65.3 (113.0)		62.9 (108.9)		65.3 (113.0)		60.5 (104.7)		66.3 (114.7)		-	
Coefficient of Thermal Expansion 68-212°F μin/in/°F(100-200°C μm/mm/°C)	15.2	(27.4)	15.2	(27.4)	15.2	(27.4)	15.4	(27.8)	12.9	(23.3)		-
Specific Heat: BTU/lb/°F (J/hg/°C)	.10 (419)		.10 (419)		.10 (419)		.10 (419)		.104 (435)		-	
Pattern or Die Shrinkage: in/in	0.007		0.007		0.007		0.007		0.007			
Chemical Specifications	Ingot	Costing	Ingot	Casting	Ingot	Casting	Ingot	Costing	Ingot	Casting	Ingot	Casting
(per ASTM) (% by Weight)	Ingot 3.9-4.3	Casting 3.7-4.3	Ingot 3.9-4.3	Casting 3.7-4.3	Ingot 3.9-4.3	Casting 3.7-4.3	Ingot	Casting 3.5-4.3	Ingot 8.2-8.8	Casting	Ingot	Casting
Mg	0.03-0.06	0.02-0.06	0.03-0.06	0.02-0.06	0.010-0.020	0.005-0.020	3.9-4.3 0.025-0.05	0.020-0.050	0.02-0.03	8.0-8.8	"Proprietary" "Proprietary"	"Proprietary" "Proprietary"
Cu	0.10 max	0.1 max ⁹	0.7-1.1	0.7-1.2	0.10 max	0.1 max ⁹	2.7-3.3	2.5-3.0	0.9-1.3	0.08-1.3	"Proprietary"	"Proprietary"
Fe (max)	0.035	0.05	0.035	0.05	0.035	0.05	0.035	0.05	0.035	0.075	"Proprietary"	"Proprietary"
PB (max)	0.004	0.005	0.004	0.005	0.0030	0.003	0.004	0.005	0.005	0.006	"Proprietary"	"Proprietary"
Cd (max)	0.003	0.004	0.003	0.004	0.002	0.002	0.003	0.004	0.005	0.006	"Proprietary"	"Proprietary"
Sn (max)	0.0015	0.002	0.0015	0.002	0.001	0.001	0.0015	0.002	0.002	0.003	"Proprietary"	"Proprietary
Ni (other) ¹⁰	_	_	-	_	0.005-0.020	0.005-0.020	_	-	-	_	"Proprietary"	"Proprietary"
Zn	Balance	Balance	Balance	Balance	Balance	Balance	Balance	Balance	Balance	Balance	Balance	Balance
Industry Standards	Ingot	Casting	Ingot	Casting	Ingot	Casting	Ingot	Casting	Ingot	Casting	Ingot	Casting
ASTM	B240	B86	B240	B86	B240	B86	B240	B86	B240	B86	-	-
	AG40A	AG40A	AC41A	AC41A	AG40B	AG40B	AC43A	AC43A				
SAE	J468B	J468B	J468B	J468B			Former					
	903	903	925	925			921					
UNS	Z33521	Z33520	Z35530	Z35531	Z33522	Z333523	Z35540	Z35541	Z356365	Z35636		

¹3 hr at 610°F and furnace cool. ² 1/4" square specimen untouched ³ 10 mm square specimen untouched ⁴ Comprehensive strength ⁵ Previous industry accepted standard. ⁶ Estimated values to be confirmed by research. ⁷ Values for permanent mold condition which should be similar for other processes except for ZA-27 Sand Cast Heat Treat (HT).

⁸ Standard revised 1998.

⁹ Per ASTM B86-88, * For the majority of commercial applications, a copper content in the range of 0.25 to 0.75% will not adversely affect the serviceability of die castings and should not serve as a basis for rejection.* ¹⁰ Zamak alloy ingot for die casting (with the exception of % Ni in No. 7) may contain Ni, Cr, Mn, Si, in amounts of up to 0.02, 0.02, 0.06, and 0.035% respectively. ZA ingot for foundry and pressure casting may contain Ni, Cr, or Mn in amounts of up to 0.01% each or 0.03% total.

Additional info on backside.

THE ADVANTACES CAN DE VOUDS AT DECO

Precision Tolerances: Zinc alloys are castable to closer	Toughness: Few materials provide the strength and	Desite Descentes Deskins and sectors at the	
r tolerances than other materials or molded plastics, therefore presenting the opportunity to reduce or eliminate machining. "Net Shape" or "Zero Machining" manufacturing is a major advantage of zinc casting.	toughness of zinc alloys. Impact resistance is	Bearing Properties: Bushing and wear inserts in component designs can often be eliminated because of zinc's excellent bearing properties. For example, zinc alloys have outperformed bronze in heavy duty industrial applications.	Machinability: Fast, trouble-free machining characteristics of zinc materials minimize tool wear and machining costs.
Strength & Ductility: Zinc alloys offer high strengths (to	Rigidity: Zinc alloys have the rigidity of metals with	Easy Finishing: Zinc castings are readily polished, plated	Long Tool Life: Low casting temperatures result in less
60,000 psi) and superior elongation for strong designs and formability for bending, crimping and riveting operations.	, , , , , , , , , , , , , , , , , , , ,	• • •	thermal shock and, therefore, extended life for die casting tools. For example, tooling life can be more tha 10 times that of aluminum dies. Zinc alloys are among
			the cleanest melting materials available. Zinc metal is non-toxic, and scrap items are reusable resource which are efficiently recycled.
			Clean and recyclable: Zinc allous are among the cleanest melting materials available. Zinc metal is non-toxic, and scrap items are a reusable resource which ar efficiently recycled.
ZAMAK NO. 5	ZAMAK NO. 7	ZAMAK NO.2	ZA-8
No. 5 alloy castings are marginally stronger and harder than No. 3. However, these improvements are tempered with a reduction in ductility which can affect formability during secondary bending, riveting, swaging or crimping operations. No. 5 contains an addition of 1% copper which accounts for these property changes. The alloy is widely die cast in Europe and does exhibit excellent castability characteristics, as well as, improved creep performance over No. 3.	No. 7 alloy is a modification of No. 3 alloy in which lower magnesium content is specified in order to increase the fluidity. To avoid problems with inter- granular corrosion lower levels of impurities are called for and a small quantity of nickel is specified. Alloy No. 7 has slightly better ductility than No. 3 with other properties remaining at the same level.	No. 2 is the only ZAMAK alloy which is used for gravity casting; mainly for metal forming dies or plastic injection tools. This alloy is sometimes referred to as KIRKSITE.	A good gravity casting alloy, ZA-8 is rapidly growing for pressure die casting. ZA-8 can be hot chamber die cast with improved strength, hardness and creep propertie over ZAMAKS, with the exception of a No. 2 alloy which is very similar in performance. ZA-8 is readily plated an finished using standard procedures for ZAMAKS. When the performance of standard No. 3 and No. 5 is in question, ZA-8 is often the die casting choice because of high strength and creep properties and efficient hot chamber castability.
_	The alloy is therefore popular for those special cases	For die casting, No.2 offers the highest strength and	EZAC™ This
Because of No. 3's wide availability, material specifiers often strengthen components by design modification	where the die caster is making thin walled components requiring a good surface finish. However, research	hardness of the ZAMAK family. However, its high copper content (3%) results in property changes upon long term	the most recent development in commercially availabl
instead of using No. 5. However, when an extra measure of tensile performance is needed, No. 5 alloy casting are recommended. The alloy is readily plated, finished and machined, comparable to No. 3 alloy.			
		Although No. 2 alloy exhibits excellent castability, it has seen limited use by die casters in North America. It does, however, provide some interesting characteristics which may assist designers. It's creep performance is rated higher than other ZAMAKS and No. 2 alloy is a good	•
	 eliminate machining. "Net Shape" or "Zero Machining" manufacturing is a major advantage of zinc casting. Strength & Ductility: Zinc alloys offer high strengths (to 60,000 psi) and superior elongation for strong designs and formability for bending, crimping and riveting operations. ZAMAK NO. 5 No. 5 alloy castings are marginally stronger and harder than No. 3. However, these improvements are tempered with a reduction in ductility which can affect formability during secondary bending, riveting, swaging or crimping operations. No. 5 contains an addition of 1% copper which accounts for these property changes. The alloy is widely die cast in Europe and does exhibit excellent castability characteristics, as well as, improved creep performance over No. 3. Because of No. 3's wide availability, material specifiers often strengthen components by design modification instead of using No. 5. However, when an extra measure of tensile performance is needed, No. 5 alloy casting are 	eliminate machining, "Net Shape" or "Zero Machining" manufacturing is a major advantage of zinc casting. and grey cast iron. Strength & Ductility: Zinc alloys offer high strengths (to 60,000 psi) and superior elongation for strong designs and formability for bending, crimping and riveting operations. Rigidity: Zinc alloys have the rigidity of metals with modulus of elasticity characteristics equivalent to other dic cast materials. Stiffness properties are, therefore, far superior to engineering plastics. ZAMAK NO.5 Anti-Sparking: Zinc alloys are non-sparking and suitable for hazardous location applications such as coal mines, tankers, and refineries. ZAMAK NO.5 No. 5 alloy castings are marginally stronger and harder than No. 3. However, these improvements are tempered with a reduction in ductility which can affect formability during secondary bending, riveting, swaging or crimping operations. No. 5 contains an addition of 1% copper with accounts for these property changes. The alloy is with accounts for these property changes. The alloy is the accounts for these property changes. The alloy is there the dic caster is making thin walled components requiring a good surface finish. However, research testing has shown that metal and die temperatures have a bigger effect than changing alloys. Close alternet so as to eliminate defects and achieve consistent quality. Because of No. 3's wide availability, material specifiers often strengthen components by design modification instead of using No.5. However, when an extra menesur	eliminate inachining: "Net Shape" of "Zern Michining" and grey cast iron. allog yes cast iron. all